

Теплосчетчики SA-94

ТУ EE 10097265 TT 29-2009

(TY 4218-029-84818026-2009)

Коды: ИАШБ.408841.004.XX, ИАШБ.408841.005.XX, ИАШБ.408841.006.XX, и ИАШБ.408841.009.XX Заказы направлять: ТОО "SHIP" Калевипоя, 3-64 Таллинн, 13625, Эстония Тел. + 372 56 50 20 73 Факс + 372 632 23 64 igor@ship.ee

Назначение, устройство и принцип работы

Электромагнитные счетчики тепловой энергии SA-94 (модификации SA-94/1, SA-94/2, SA-94/2м и SA-94/3A)* (далее – теплосчетчики) предназначены для измерения, индикации и коммерческого учёта количества теплоты (тепловой энергии) и теплоносителя в закрытых и открытых водяных системах теплоснабжения (или системах охлаждения). Открытые системы теплоснабжения могут иметь в своём составе трубопроводы: подпитки, горячего водоснабжения ("тупиковые" или "с циркуляцией") и холодного водоснабжения, в том числе питьевой воды. Теплосчетчики могут также использоваться в автоматизированных системах учета, контроля и регулирования потребления и отпуска тепловой энергии.

Теплосчетчики позволяют измерять количество теплоты:

- отпускаемой источником тепловой энергии в систему теплоснабжения, или
- используемой потребителем из системы теплоснабжения, или
- отводимой водяной системой охлаждения от технологической установки, путём обработки информации о расходах теплоносителя и разности его теплосодержания на входе и выходе узла учета.
- * цифра, стоящая в знаменателе кода модификации прибора, определяет количество трубопроводов, расход в которых может контролировать теплосчетчик данной модификации.

В ходе пусконаладочных работ возможно максимально адаптировать теплосчетчик к контролируемой им системе теплоснабжения путём ручного выбора:

- режима работы для данного узла;
- пределов измерения давления и электрического сигнала постоянного тока с учётом применяемого преобразователя давление-ток;
- максимального договорного расхода и связанного с ним токового или частотного выходного сигнала:
- соответствия любого измеряемого параметра токовому или частотному выходному сигналу;
- дат переходов и значений договорной температуры холодной воды для "летнего" и "зимнего" периодов теплопотребления и др.

Теплосчетчики осуществляют автоматическую самодиагностику и занесение в архив кодов нештатных ситуаций при всех отклонениях в работе системы теплоснабжения и собственных узлов, в том числе при отключениях приборов от сети. Одновременно с кодом в архиве фиксируется время и дата начала и конца нештатной ситуации.

На дисплей теплосчетчика можно вывести время проведения последних изменений в архиве заводских настроек, что **позволяет выявлять несанкционированные вмешательства** в архив заводских настроек после приёмки узла учета в эксплуатацию.

Теплосчетчики вычисляют и фиксируют во внутренних энергонезависимых архивах среднечасовые значения измеряемых параметров системы теплоснабжения за последние 45 суток и средесуточные значения параметров за последние полтора года работы прибора.

Теплосчетчики имеют электрические выходные сигналы: токовые или частотные. Для подключения к ЭВМ, модему или специальному адаптеру AD2301 для снятия накопленной

информации, теплосчетчик имеет выход стандартного последовательного интерфейса (RS232 или RS422/RS485 в зависимости от заказа).

В комплект теплосчетчика входят:

- измерительно-вычислительный блок (далее вычислительный блок) 1 шт.(см. фото 1);
- первичный измерительный преобразователь (далее преобразователь) 1 или 2 шт.(в зависимости от модификации теплосчетчика См. фото 2.);
- платиновые термопреобразователи сопротивления 2 или 3 шт.(в зависимости от модификации теплосчетчика. См. фото 3.);
- защитные гильзы для установки термопреобразователей на трубопроводе 2 или 3 шт.(в зависимости от модификации теплосчетчика.)
- по заказу потребителя теплосчетчик может быть дополнительно укомплектован:
- электромагнитным счетчиком жидкости с импульсным выходом VA2305M;
- розеткой интерфейсной AD1001.

Вычислительные блоки теплосчетчиков конструктивно изготавливаются защищённом от попадания пыли и воды корпусе настенного исполнения. Преобразователи могут быть фланцевого и резьбового подсоединения к трубопроводу. Степень защиты и вычислительного блока, и преобразователей - **IP65** по ГОСТ 14254-96.

Теплосчетчики соответствуют "Правилам учёта тепла и теплоносителя" и ГОСТу Р 51649-2000, имеет Сертификат об утверждении типа средств измерения РФ, Разрешение на применение Федеральной службы по экологическому, технологическому и атомному надзору и санитарно-эпидемиологическое Заключение Государственной санитарно-эпидемиологической службы РФ.

Межповерочный интервал - 4 года.

Имеются также сертификаты утверждения типа в республике Казахстан и в Украине.

Теплосчетчики измеряют, вычисляют и индицируют следующие параметры системы теплоснабжения:

- расход теплоносителя в трубопроводах в м³ч или т/ч;
- суммарную, нарастающим итогом массу теплоносителя прошедшего по трубопроводам системы теплоснабжения, подпитки или ГВС (горячего водоснабжения) или объём воды, прошедшей по трубопроводу ХВС (холодного водоснабжения), в **т** или **м³/ч**;

- тепловую мощность в Гкал/ч или кВт;
- суммарное, нарастающим итогом потребление тепловой энергии в Гкал или МВт*ч;
- температуру теплоносителя в подающем и обратном трубопроводах, в трубопроводах подпитки, или XBC, или FBC, или наружного воздуха, °C;
- разность температур в трубопроводах системы теплоснабжения, °C;
- давление в трёх трубопроводах, МПа;
- текущую дату с указанием года, месяца и числа;
- текущее время с указанием часов, минут и секунд;
- время работы прибора в режиме счёта количества теплоты.

Основные технические характеристики

Класс точности по ГОСТ Р 51649-2000	С
Пределы допускаемой относительной погрешности d _o ,	не более ± 5
измерительного канала теплосчетчиков в рабочих условиях	
при измерении количества теплоты согласно ГОСТ Р 51649-2000, %	
Ориентировочный диапазон скоростей теплоносителя, фиксируемых	0,016 - 10,00
прибором, м/с	
Ряд диаметров условного прохода	10, 15, 25, 40, 50, 80,
первичных преобразователей, мм	100, 150, 200, 300, 400
Количество выбираемых максимальных значений расхода при	11
фиксированном Ду	
Динамический диапазон измерения расхода в трубопроводах	от 25 до 1000
Диапазон измерения расхода, м³/ч	от 0,1 до 4000,00
Диапазон измеряемых температур теплоносителя, °C	1 - 150 (в подающем
	трубопроводе);
	1 - 140 (в обратном
	трубопроводе)
Диапазон измеряемой разности температур теплоносителя, °С	1 - 140
Диапазон выходных электрических частотных сигналов, Гц	0 - 2000
Диапазон выходных электрических сигналов постоянного тока, мА	0 - 5; 0 - 20; 4 - 20
Напряжение питания блока от сети переменного тока	в диапазоне от 187 до
частотой 50 или 60 Гц, В	242
Потребляемая мощность, ВА	не более 15,0
Режим работы	круглосуточный
Средний срок службы, лет	12

Электромагнитные теплосчетчики SA-94 зарекомендовали себя как, оптимальные по соотношению цена/качество, устройства контроля, как в напорных узлах коммерческого учета тепловой энергии и теплоносителя, так и на технологических линиях; надёжные, точные, объективные и защищённые от несанкционированного доступа (вмешательства).